Background: Traditionally, scientists studied microbiology through the manner of batch cultures, to conclude the dynamics or outputs by averaging all individuals. However, as the researches go further, the heterogeneities among the individuals have been proven to be crucial for the population dynamics and fates. Results: Due to the limit of technology, single-cell analysis methods were not widely used to decipher the inherent connections between individual cells and populations. Since the early decades of this century, the rapid development of microfluidics, fluorescent labelling, next-generation sequencing, and high-resolution microscopy have speeded up the development of single-cell technologies and further facilitated the applications of these technologies on bacterial analysis. Conclusions: In this review, we summarized the recent processes of single-cell technologies applied in bacterial analysis in terms of intracellular characteristics, cell physiology dynamics, and group behaviors, and discussed how single-cell technologies could be more applicable for future bacterial researches.