This paper describes the relationship between protein-bound phenols in red clover, induced by different degrees of damaging before wilting and varying wilting duration, and in silo lipid metabolism. The ultimate effect of these changes on rumen biohydrogenation is the second focus of this paper. For this experiment, red clover, damaged to different degrees (not damaged (ND), crushing or frozen/thawing (FT)) before wilting (4 or 24 h) was ensiled. Different degrees of damaging and wilting duration lead to differences in polyphenol oxidase (PPO) activity, measured as increase in protein-bound phenols. Treatment effects on fatty acid (FA) content and composition, lipid fractions (free FAs, membrane lipids (ML) and neutral fraction) and lipolysis were further studied in the silage. In FT, red clover lipolysis was markedly lower in the first days after ensiling, but this largely disappeared after 60 days of ensiling, regardless of wilting duration. This suggests an inhibition of plant lipases in FT silages. After 60 days of ensiling no differences in lipid fractions could be found between any of the treatments and differences in lipolysis were caused by reduced FA proportions in ML of wilted FT red clover. Fresh, wilted (24 h) after damaging (ND or FT) and ensiled (4 or 60 days; wilted 24 h; ND or FT) red clover were also incubated in rumen fluid to study the biohydrogenation of C18:3n-3 and C18:2n-6 in vitro. Silages (both 60 days and to a lower degree 4 days) showed a lower biohydrogenation compared with fresh and wilted forages, regardless of damaging. This suggests that lipids in ensiled red clover were more protected, but this protection was not enhanced by a higher amount of protein-bound phenols in wilted FT compared with ND red clover. The reduction of rumen microbial biohydrogenation with duration of red clover ensiling seems in contrast to what is expected, namely a higher biohydrogenation when a higher amount of FFA is present. This merits further investigation in relation to strategies to activate PPO toward the embedding of lipids in phenol-protein complexes.Keywords: polyphenol oxidase, fatty acid, PUFA, biohydrogenation, lipolysis
ImplicationsRed clover polyphenol oxidase (PPO) has the potential to protect lipids against lipolysis in silage and lipolysis and biohydrogenation in the rumen, leading to higher concentrations of polyunsaturated fatty acids in ruminant meat and milk. PPO is a stress-activated enzyme, which is active in red clover. The goal of this paper was to study the effect of PPO activity due to damaging after mowing, measured as an increase in protein-bound phenols, and wilting duration on lipid metabolism in the silage, mainly lipolysis, and lipolysis and biohydrogenation in the rumen.