Carbamide peroxide (CP), a tooth whitening agent, is chemically unstable. The present study explores stability enhancement of CP by loading in a nanofibrous film (CP-F) composed of polyvinyl alcohol/polyvinylpyrrolidone/silica mixture, using an electrospinning technique. Kept at a temperature range of 60–80 °C for 6 h, CP in CP-F showed significantly higher stability than that in a polymer solution and in water, respectively. Degradation of CP in CP-F could be described by the first order kinetics with the predicted half-life by the Arrhenius equation of approximately 6.52 years. Physicochemical properties of CP-F after long-term storage for 12 months at different temperatures and relative humidity (RH) were investigated using scanning electron microscopy, X-ray diffractometry, differential scanning calorimetry, and Fourier transform infrared spectroscopy. It was found that high temperature and high humidity (45 °C/75% RH) could enhance water absorption and destruction of the nanofibrous structure of CP-F. Interestingly, kept at 25 °C/30% RH, the nanofibrous structure of CP-F was not damaged, and exhibited no water absorption. Moreover, the remaining CP, the mechanical properties, and the adhesive properties of CP-F were not significantly changed in this storage condition. It is concluded that the developed CP-F and a suitable storage condition can significantly improve CP stability.