Direct evidence that hyperglycemia, rather than concomitant increases in known risk factors, induces atherosclerosis is lacking. Most diabetic mice do not exhibit a higher degree of atherosclerosis unless the development of diabetes is associated with more severe hyperlipidemia. We hypothesized that normal mice were deficient in a gene that accelerated atherosclerosis with diabetes. The gene encoding aldose reductase (AR), an enzyme that mediates the generation of toxic products from glucose, is expressed at low levels in murine compared with human tissues. Mice in which diabetes was induced through streptozotocin (STZ) treatment, but not nondiabetic mice, expressing human AR (hAR) crossed with LDL receptor-deficient (Ldlr -/-) C57BL/6 male mice had increased aortic atherosclerosis. Diabetic hAR-expressing heterozygous LDL receptor-knockout mice (Ldlr +/-) fed a cholesterol/cholic acid-containing diet also had increased aortic lesion size. Lesion area at the aortic root was increased by STZ treatment alone but was further increased by hAR expression. Macrophages from hARtransgenic mice expressed more scavenger receptors and had greater accumulation of modified lipoproteins than macrophages from nontransgenic mice. Expression of genes that regulate regeneration of glutathione was reduced in the hAR-expressing aortas. Thus, hAR increases atherosclerosis in diabetic mice. Inhibitors of AR or other enzymes that mediate glucose toxicity could be useful in the treatment of diabetic atherosclerosis.
IntroductionAlthough people with both type 1 and type 2 diabetes develop increased atherosclerosis, which leads to more heart attacks and strokes, direct evidence that this is mediated by hyperglycemia is lacking. In part, this is because additional atherogenic factors such as lipid abnormalities and hypertension accompany the diabetes (1, 2). Efforts to demonstrate the presumed toxic effects of hyperglycemia in experimental animals have been similarly hindered (3). Diabetes has been superimposed onto wild-type and atherosclerosis-prone mice in an attempt to reproduce the relationship between diabetes and macrovascular disease. However, a clear model of diabetes-induced accelerated atherosclerosis is lacking. In several situations, genetic insulin resistance and streptozotocin-mediated (STZ-mediated) destruction of islet cells produced greater hyperlipidemia and, not surprisingly, more atherosclerosis (4). This was noted in both LDL receptorknockout (Ldlr -/-) (5, 6) and apoE-knockout mice (7). In a recent study, chow-fed Ldlr -/-diabetic mice had more atherosclerosis at the aortic root, but when these mice were fed cholesterol-containing diet, the atherosclerosis correlated with plasma cholesterol and not glucose (8). Thus, as in many previous reports, the more advanced vascular lesions in these mice were attributable to greater hyperlipidemia and not hyperglycemia or defective insulin actions.