Background
The identification of the cellular and molecular pathways that mediate the development of non-alcoholic steatohepatitis is of crucial importance. Cytokines produced by liver-resident and infiltrating inflammatory cells, play a pivotal role in liver inflammation. The role of the proinflammatory cytokines IL-1α and IL-1β in steatohepatitis remains elusive.
Aims & Methods
We employed IL-1α and IL-1β-deficient mice and transplanted marrow cells to study the role of liver-resident and bone marrow-derived IL-1 in steatosis and its progression to steatohepatitis.
Results
Atherogenic diet-induced steatohepatitis in wild-type mice was associated with 16 and 4.6 folds-elevations in mRNA levels of hepatic IL-1α and IL-1β, respectively. In mice deficient in either IL-1α or IL-1β the transformation of steatosis to steatohepatitis and liver fibrosis was markedly reduced. This protective effect in IL-1α-deficient mice was noted despite increased liver cholesterol levels. Deficiency of IL-1α markedly reduced plasma serum amyloid A and steady-state levels of mRNA coding for inflammatory genes (P-selectin, CXCL1, IL-6, TNFα) as well as pro-fibrotic genes (MMP-9 and Collagen) and particularly a 50% decrease in TGFβ (p=0.004). IL-1α mRNA levels were 2 folds lower in IL-1β-deficient mice, and IL-1β transcripts were 3 folds lower in IL-1α-deficient compared to wild-type mice. Hepatic cell derived IL-1α rather than from recruited bone marrow-derived cells is required for steatohepatitis development.
Conclusions
These data demonstrate the critical role of IL-1α and IL-1β in the transformation of steatosis to steatohepatitis and liver fibrosis in hypercholesterolemic mice. Therefore, the potential of neutralizing IL-1α and/or IL-1β to inhibit development of steatohepatitis should be explored.
Abstract-To study the possible role of the human lipid-oxidizing enzyme 15-lipoxygenase (15-LO) in atherosclerosis, we overexpressed it specifically in the vascular wall of C57B6/SJL mice by using the murine preproendothelin-1 promoter. The mice overexpressing 15-LO were crossbred with low density lipoprotein (LDL) receptor-deficient mice to investigate atherogenesis. High levels of 15-LO were expressed in the atherosclerotic lesion in the double-transgenic mice as assessed by immunohistochemistry. The double-transgenic, 15-LO-overexpressing, LDL receptor-deficient mice (LDLR Ϫ/Ϫ /15LO) developed significantly larger atherosclerotic lesions at the aortic sinus compared with lesions in the LDL receptor-deficient (LDLR Ϫ/Ϫ ) mice after 3 and 6 weeks (107 000 versus 28 000 m 2 [PϽ0.001] and 121 000 versus 87 000 m 2 [PϽ0.05], respectively) of an atherogenic diet. LDL from the LDLR Ϫ/Ϫ /15LO mice was more susceptible to oxidation than was the LDL from the control LDLR Ϫ/Ϫ mice, as shown by a shorter lag period for copper-induced conjugated diene formation. On the other hand, no differences were found in the levels of serum anti-oxidized LDL antibodies between the study groups. There were also no differences with respect to the density of macrophages and T lymphocytes infiltrating the lesions in both experimental groups. Taken together, these results support the hypothesis that 15-LO overexpression in the vessel wall is associated with enhanced atherogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.