Purpose
Pb-free solders have been developed to replace the standard Sn–Pb eutectic solder since the prohibition on Pb used in solders. The Sn–Ag–Cu series of lead-free solders is the most extensively used in the electronics industry. The Ag3Sn, which forms during isothermal ageing, can significantly degrade solder joint reliability. Sn–Ag–Cu solder’s high price further hindered its use in the electronics industry. This paper aims to investigate different copper percentages into Sn–xCu solder alloy to improve its microstructure and strength performance.
Design/methodology/approach
The solder alloys used in this work were Sn–xCu, where x = 0.0, 0.3, 0.5, 0.7, 1.0 Wt.%, which was soldered onto electroless nickel immersion gold (ENIG) substrate using carbon dioxide (CO2) gas laser. Then these samples were subjected to isothermal aging for 0, 200, 500, 1,000 and 2,000 h. The Sn–xCu solder alloy was fabricated through a powder metallurgy process.
Findings
Microstructure characterization showed that Cu addition resulted in fine and rounded shape of Cu–Sn–Ni particles. Shear strength of Sn–xCu solder joints was increased with increasing Cu content, but at aging duration of 1,000 h, it dropped slightly. It is believed that the strength improved due to the increment of diffusion rate during isothermal aging.
Practical implications
In a Cu–Sn solder, the recommended amount is 1.0 Wt.% of Cu. In extensive aging procedures, it was discovered that Sn1.0Cu solder improved the reliability of solder joints. The findings indicated that the innovative solder alloys might satisfy the needs of high-reliability applications.
Originality/value
The study shows that the right amount of Cu enhances the solidification of Sn–Cu solder, increasing the shear force of the Cu–Sn solder joint. The Sn1.0Cu exhibits a ductile fracture on the top microstructure, improving the joint’s average shear strength.