Eco-friendly energy harvesting from the surrounding environment has been triggered extensive researching enthusiasm due to the threat of global energy crisis and environmental pollutions. By the conversion of mechanical energy that is omnipresent in our environment into electrical energy, triboelectric nanogenerator (TENG) can potentially power up small electronic devices, serves as a self-powered detectors and predominantly, it can minimize the energy crisis by credibly saving the traditional non-renewable energy. In this study, we present a novel bio-based TENG comprising PDMS/α-Fe2O3 nanocomposite film and a processed human hair-based film, that harvests the vibrating energy and solar energy simultaneously by the integration of triboelectric technology and photoelectric conversion techniques. Upon illumination, the output voltage and current signals rapidly increased by 1.4 times approximately, compared to the dark state. Experimental results reveal that the photo-induced enhancement appears due to the effective charge separation depending on the photosensitivity of the hematite nanoparticles (α-Fe2O3 nanoparticles) over the near ultraviolet (UV), visible and near infrared (IR) regions. Our work provides a new approach towards the self-powered photo-detection, while developing a propitious green energy resource for the circular bio-economy.