Sodium-based bentonite is used for drilling operations because of its high swelling capacity. This type of bentonite clay is not sourced locally in many oil- and gas-producing nations. However, low-swelling clays (calcium- and potassium-based) are in abundant quantities in most of these countries. Hence, there is a need to convert low-swelling bentonite clays to sodium-based bentonite. The method used to convert low-swelling clays is more applicable to calcium-based bentonite. This research investigated a thermochemical treatment method that converted potassium-based bentonite to sodium-based bentonite. The raw clay materials were sourced from Pindinga (P) and Ubakala (U) clay deposits in Nigeria. An X-ray diffractometer (XRD), an energy dispersive X-ray (EDX), and a scanning electron microscope (SEM) were used to characterize the raw clay samples. Mud slurry was prepared by mixing 22 g of the local raw clays, 3 wt.% soda ash, and MgO at concentrations between 1 and 3 wt.% and heating at 90 °C. The result showed that the viscosities of samples P and U increased from 6 to 26 and 8 to 35.5 cP before and after thermochemical treatment, respectively. Also, due to the thermochemical treatment, the samples’ yield point, consistency factor, consistency index, and thixotropy behavior were all significantly improved.