Recently, the bioconversion of biomass into biofuels and biocommodities has received significant attention. Although green technologies for biofuel and biocommodity production are advancing, the productivity and yield from these techniques are low. Over the past years, various recovery and purification techniques have been developed and successfully employed to improve these technologies. However, these technologies still require improvement regarding the energy-consumption-related costs, low yield and product purity. In the context of sustainable green production, this review presents a broad review of membrane purification technologies/methods for succinic acid, a biocommodity obtained from lignocellulosic biomass. In addition, a short overview of the global market for sustainable green chemistry and circular economy systems or zero waste approach towards a sustainable waste management is presented. Succinic acid, the available feedstocks for its production and its industrial applications are also highlighted. Downstream separation processes of succinic acid and the current studies on different downstream processing techniques are critically reviewed. Furthermore, critical analysis of membrane-based downstream processes of succinic acid production from fermentation broth is highlighted. A short review of the integrated-membrane-based process is discussed, as well, because integrating “one-pot” lignocellulosic bioconversion to succinic acid with downstream separation processing is considered a critical issue to address. In conclusion, speculations on outlook are suggested.
Exploitation of Nigerian bentonitic clay deposit will offer economic advantage in terms of utilization for drilling purpose and prevent money spent on importation. Clay used for this analysis was beneficiated using sodium Carbonate (Na2CO3) and the change in the elemental composition of the raw clay sample and treated clay with was estimated using X-ray fluorescence spectroscopy (XRF). The treated clay and locally sourced bio-materials were added to the formulation of drilling fluid using Reduced Central Composite Design (RCCD). The fluid loss and cake thickness of prepared drilling fluid were determined using filter loss test kit. The result of the investigation show that the maximum recorded fluid loss was 14.4 ml/30mins at 100 psi while cake thickness values improved with addition of the bio-materials to the drilling fluid formulation when compared with the standard values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.