Abstract:Application of TiO 2 photocatalytic systems for water purification and remediation is based on the generation of short-lived reactive oxygen species able to destroy a variety of contaminants, upon the ultra-bandgap irradiation of TiO 2 particles in the aerated aqueous media. However the recently more profound presence of inorganic nitrogen compounds can affect these processes due to the complex photochemical behavior of the nitrite and nitrate in aqueous solutions. The effect of the nitrite present in the titanium dioxide suspensions was monitored via the reactive radical intermediates detected by EPR spin trapping technique. Various spin trapping agents were applied to follow the changes in the behavior of the system caused by the nitrite upon UVA irradiation and the limits of the spin trapping technique itself were also considered. The competition reaction of the photogenerated holes and hydroxyl radicals with the nitrite was revealed as the dominant process occurring in the studied systems.