Recently, tungsten has been found to form a highly underdense nanostructured morphology ("W fuzz") when bombarded by an intense flux of He ions, but only in the temperature window 900-2000 K. Using object kinetic Monte Carlo simulations (pseudo-3D simulations) parameterized from first principles, we show that this temperature dependence can be understood based on He and point defect clustering, cluster growth, and detrapping reactions. At low temperatures (<900 K), fuzz does not grow because almost all He is trapped in very small He-vacancy clusters. At high temperatures (>2300 K), all He is detrapped from clusters, preventing the formation of the large clusters that lead to fuzz growth in the intermediate temperature range.