Revealing the spatial differentiation of ecosystem service (ES) trade-offs and their responses to land-use change along precipitation gradients are important issues in the Loess Plateau of China. We selected three watersheds called Dianshi (300 mm < MAP (mean annual precipitation) < 400 mm), Ansai (400 mm < MAP < 500 mm), and Linzhen (500 mm < MAP < 600 mm). A new ES trade-off quantification index was proposed, and quantile regression, piecewise linear regression, and redundancy analysis were used. The results were as follows. (1) Carbon sequestration (TC) and soil conservation (SEC) increased, but water yield (WY) decreased in the three watersheds from 2000 to 2018. (2) The effect of forests on trade-offs was positive in three watersheds, the main effect of shrubs was also positive, but the negative effect appeared in the TC-WY trade-off in Ansai. Grassland exacerbated trade-offs in Dianshi, whereas it reduced trade-offs in Ansai and Linzhen. These effects exhibited respective trends with the quantile in the three watersheds. (3) There were threshold values that trade-offs responded to land-use changes, and we could design land-use conversion types to balance ESs. In general, the water consumption of grass cannot be ignored in Dianshi; shrubs and grass are suitable vegetation types, and forests need to be restricted in Ansai; more forests and shrubs can be supported in Linzen due to higher precipitation, but the current proportions of forests and shrubs are too high. Our research contributes to a better understanding of the response mechanisms of ES trade-offs to land-use changes.