Abstract:The influence of crater depth on plasma properties and laser-induced breakdown spectroscopy (LIBS) emission has been evaluated. Laser-induced plasmas were generated at the surface and at the bottom of different craters in a copper sample. Plasmas produced at the sample surface and at the bottom of the craters were spatially and temporally resolved. LIBS emission, temperature, and electronic number density of the plasmas were evaluated. It is shown that the confinement effect produced by the craters enhances th… Show more
“…Also, the sample composition and surface condition may also affect LIBS spectra. For example, craters at the ablation site may have a significant effect on the LIBS intensity [42–44]. …”
Section: Discussionmentioning
confidence: 99%
“…Of course continuous ablation at the same location will lead to deep craters and these craters will affect LIBS intensity. Some studies have shown that LIBS in a confined location, for example ablation craters, has a significant effect on the signal intensity [42–44]. Dreyer et al .…”
Laser-induced breakdown spectroscopy (LIBS) is typically performed at ambient Earth atmospheric conditions. However, interest in LIBS in other atmospheric conditions has increased in recent years, especially for use in space exploration (e.g., Mars and Lunar) or to improve resolution for isotopic signatures. This review focuses on what has been reported about the performance of LIBS in reduced pressure environments as well as in various gases other than air.
“…Also, the sample composition and surface condition may also affect LIBS spectra. For example, craters at the ablation site may have a significant effect on the LIBS intensity [42–44]. …”
Section: Discussionmentioning
confidence: 99%
“…Of course continuous ablation at the same location will lead to deep craters and these craters will affect LIBS intensity. Some studies have shown that LIBS in a confined location, for example ablation craters, has a significant effect on the signal intensity [42–44]. Dreyer et al .…”
Laser-induced breakdown spectroscopy (LIBS) is typically performed at ambient Earth atmospheric conditions. However, interest in LIBS in other atmospheric conditions has increased in recent years, especially for use in space exploration (e.g., Mars and Lunar) or to improve resolution for isotopic signatures. This review focuses on what has been reported about the performance of LIBS in reduced pressure environments as well as in various gases other than air.
“…Corsi et al created two different crater depths (1 mm in diameter, and 1 mm and 1.5 mm in depth) with a drill on a copper sample. It was shown that the confinement effect produced by the craters enhances the LIBS signal [22]. Shen et al used a series of cylindrical pipes with different diameters to confine the plasma and showed that the maximum signal enhancement factor was about 9 [23].…”
Hao, Z. Q.; Shen, M.; Xiong, W.; He, X. N.; Xie, Z. Q.; Gao, M.; Li, X. Y.; Zeng, X. Y.; and Lu, Yongfeng, "Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy" (2013
“…Corsi et al reported that the plasmas created within the craters were confined by the crater walls. [8] The spatial-confinement effects were clearly observed by using a pair of parallel Al walls in our previous work. [9] In this work, the aim was to study the cylindrical confinement within a round pipe.…”
Laser-induced breakdown spectroscopy (LIBS) with spatial confinement and LIBS combined with laser-induced fluorescence (LIF) have been investigated to improve the detection sensitivity and selectivity of LIBS. An obvious enhancement in the emission intensity of Al atomic lines was observed when a cylindrical wall was placed to spatially confine the plasma plumes. The maximum enhancement factor for the emission intensity of Al atomic lines was measured to be around 10. Assuming local thermodynamic equilibrium conditions, the plasma temperatures are estimated to be in the range from 4000 to 5800 K. It shows that the plasma temperature increased by around 1000 K when the cylindrical confinement was applied. Fast imaging of the laser-induced Al plasmas shows that the plasmas were compressed into a smaller volume with a pipe presented. LIBS-LIF has been investigated to overcome the matrix effects in LIBS for the detection of trace uranium in solids. A wavelength-tunable laser with an optical parametric oscillator was used to resonantly excite the uranium atoms and ions within the plasma plumes generated by a Q-switched Nd:YAG laser. Both atomic and ionic lines can be selected to detect their fluorescence lines. A uranium concentration of 462 ppm in a glass sample can be detected using this technique at an excitation wavelength of 385.96 nm for resonant excitation of U II and a fluorescence line wavelength of 409.01 nm from U II. The mechanism of spatial confinement effects and the influence of relevant operational parameters of LIBS-LIF are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.