The purpose of the paper is to explain the friction conditions and the lubrication mechanism in healthy joints, based on rheological tests of synovial fluid and the identification of structures and the shape of articular surfaces. The tests were performed on cadaver preparations of large lower limp joints: hip, knee, and ankle joints. The analysis included combined experimental activities with the use of modern research and test techniques in the area of viscosity and microscopy as well as diagnostic imaging, image analysis, modelling, and FEM simulation. The tests performed allowed for the analysis of lubrication process which can be described as bioelastohydrodynamic lubrication (BEHL). The most important are viscoelasticity properties of the synovial fluid and the process whereby the external load is taken over by the pressure generated by a set of oil wedges of synovial fluid formed by naturally wavy articular surface. The multi-layer structure of the joints is characterised by variable wavy shape of cartilaginous surfaces and of bone tissue and by the variable wavy thickness of the cartilage.