The moisture sensitivity of wood–polymer composites (WPCs) is mainly related to their hydrophilic wood components. Coatings are among the alternatives that improve the dimensional stability of these composites. However, the adhesion of most coatings to the WPC surface is generally poor. Thus, chemical and/or mechanical treatments should be applied to the WPC surface to improve the coating adhesion. Therefore, the main objective of this study was to improve the adhesion coating of polypropylene (PP) WPCs through a chromic treatment. PP was reinforced by three different pulp fibers (kraft, thermomechanical (TMP), and chemothermomechanical (CTMP)) at three fiber contents (50, 60, and 70% w/w). A chromic treatment was applied to the PP-based WPCs to activate the surface of the composites and alter their roughness parameters, creating a higher interfacial zone that improved the bonding of the epoxy coating to the surface of the PP composites. The chromic treatment increased the roughness of the surface. An increase in profile and surface parameters was observed after treatment. This treatment modified the chemical composition of the surface by creating polar carbon–oxygen groups and increasing the carbonyl and hydroxyl indexes.