Monocrystalline copper samples with orientations of [001] and [221] were shocked at pressures ranging from 20 GPa to 60 GPa using two techniques: direct drive lasers and explosively driven flyer plates. The pulse duration for these techniques differed substantially: 40 ns for the laser experiments at 0.5 mm into the sample and 1.1 ~1.4 µs for the flyer-plate experiments at 5 mm into the sample. The residual microstructures were dependent on orientation, pressure, and shocking method. The much shorter pulse duration in the laser driven shock yielded microstructures closer to the ones generated at the shock front. For the flyer-plate experiments, the longer pulse duration allows shockgenerated defects to reorganize into lower energy configurations. Calculations show that the post-shock cooling for the laser driven shock is 10 3 ~ 10 4 faster than that for plateimpact shock, propitiating recovery and recrystallization conditions for the latter. At the higher pressure level, extensive recrystallization was observed in the plate-impact samples, while it was absent in the laser driven shock. An effect that is proposed to contribute significantly to the formation of recrystallized regions is the existence of micro-shear-bands, which increase the local temperature beyond the prediction from adiabatic compression.