Friction resistance usually constitutes one of the two main components for the calculation of required jacking force. This paper provides a new approach to predict the friction resistance of slurry pipe jacking. First, the existing prediction equations and their establishment methods and essential hypotheses used were carefully summarized and compared, providing good foundations for the establishment of the new model. It was found that the friction resistance can be uniformly calculated by multiplying an effective friction coefficient and the normal force acting on the external surface of the pipe. This effective friction coefficient is introduced to reflect the effect of contact state of pipe-soil-slurry, highly affected by the effect of lubrication and the interaction of pipe-soil-slurry. The critical quantity of pipe-soil contact angle (or width) involved may be calculated by Persson’s contact model. Then, the equation of normal force was rederived and determined, in which the vertical soil stress should be calculated by Terzaghi’s silo model with parameters proposed by the UK Pipe Jacking Association. Different from the existing prediction models, this new approach has taken into full consideration the effect of lubrication, soil properties (such as internal friction angle, cohesion, and void ratio), and design parameters (such as buried depth, overcut, and pipe diameter). In addition, four field cases and a numerical simulation case with various soils and design parameters were carefully selected to check out the capability of the new model. There was greater satisfaction with the measured data as compared to the existing models and the numerical simulation approach, indicating that the new approach not only has higher accuracy but is also more flexible and has a wider applicability. Finally, the influence of buried depth, overcut, and pipe diameter on the friction resistance and lubrication efficiency were analyzed, and the results can be helpful for the future design.