An important problem that arises at present refers to the increase in performances in the exploitation of the conveyor belts. Additionally, it is pursued to use some materials, which can be obtained by recycling rubber and PVC waste, in their structure. Thus, the research aimed at creating conveyor belts using materials obtained from the recycling of rubber and PVC waste. Under these conditions, conveyor belts were made that had in their structure two types of rubber and PVC, which was obtained by adding in certain proportions of reclaimed rubber and powder obtained from grinding rubber waste. In order to study the effect of adding PVC on properties, four types of conveyor belts were made, with the structure of rubber, PVC and textile reinforcement. These have been subjected to certain mechanical tests, also being analyzed from the point of view of the behavior of the accelerated aging. The results obtained showed that the addition of PVC lead to a decrease in tensile stress for the strips made, but also an increase in the tensile strain. Additionally, the elasticity tests performed before and after the accelerated aging showed that the presence of PVC in the structure of the conveyor belts determined a substantial reduction of the aging process of the rubber in the conveyor belts. Under these conditions, it has been established that the use of PVC in the structure of rubber matrix conveyor belts is beneficial if conveyor belts are to be produced that are less subject to mechanical stress, but that work in conditions that can cause accelerated aging of materials. An analysis with the finite element method (FEM) of the test samples was also performed.