The OSS on the Origins Space Telescope is designed to decode the cosmic history of nucleosynthesis, star formation, and supermassive black hole growth with wide-area spatial-spectral 3-D surveys across the full 25 to 590 micron band. Six wideband grating modules combine to cover the full band at R=300, each couples a long slit with 60-190 beams on the sky. OSS will have a total of 120,000 background-limited detector pixels in the six 2-D arrays which provide spatial and spectral coverage. The suite of grating modules can be used for pointed observations of targets of interest, and are particularly powerful for 3-D spectral spectral surveys. To chart the transition from interstellar material, particularly water, to planetary systems, two high-spectral-resolution modes are included. The first incorporates a Fourier-transform spectrometer (FTS) in front of the gratings providing resolving power of 25,000 (δv = 12 km/s) at 179 µm to resolve water emission in protoplanetary disk spectra. The second boosts the FTS capability with an additional etalon (Fabry-Perot interferometer) to provide 2 km/s resolution in this line to enable detailed structural studies of disks in the various water and HD lines. Optical, thermal, and mechanical designs are presented, and the system approach to the detector readout enabling the large formats is described.