The (Ba 1-x Sr x )TiO 3 (BST) ferroelectric thin films exhibit outstanding dielectric properties, even at high frequencies (Ͼ1 GHz), and large, electric-field dielectric tunability. This feature makes them suitable for developing a new class of tunable microwave devices. The dielectric properties and dielectric tuning property of BST thin films are closely related to the film compositions, substrate types, and post-deposition process. The successful implementation of BST films as high-frequency dielectrics in electrically tunable microwave devices requires a detailed understanding of both their processing and material properties. This paper will review the recent progress of BST thin films as active dielectrics for tunable microwave devices. The technical aspects of BST thin films, such as processing methods, post-annealing process, film compositions, film stress, oxygen defects, and interfacial structures between film and substrate, are briefly reviewed and discussed with specific samples from the recent literature. The major issues requiring additional investigations to improve the dielectric properties of BST thin films for tunable microwave applications are also discussed.