debated [11,12,14,15], but less research has been devoted to the effect of oyster reefs on the surrounding sediment. Reefs act to attenuate wave energy, possibly facilitating deposition of fine sediment [8]; this process may work in concert with oyster filtration to increase light penetration that may then shift ecosystems towards more benthic primary producers [6]. Finer particles and much higher organic matter (OM) content in oyster-associated sediments suggests a substantial role for carbon and nutrient removal by burial [8,17] and benthic algal uptake where light penetration is sufficient [6]. However, mesocosm experiments show that physical factors such as bottom shear can influence sediment resuspension and benthic micro-algal biomass, making the system more complex and the likelihood of OM burial versus remineralization more difficult to predict [7]. Several recent studies suggest that sediments associated with natural and restored oyster reefs have high rates of denitrification and may thus represent important sites for long term nitrogen removal [17][18][19][20]. Whole-creek studies and some mesocosm studies do not parse the contributions of the oysters themselves versus the associated sediments but rather consider the reef-sediment system as a whole [3,5,17]. Indeed, it is difficult to separate these effects because the presence of the reef will likely alter the depositional environment and ultimately the biogeochemistry of the surrounding sediment.