In this paper, a DC fault short circuit was conducted to analyze the DC fault current limiting characteristics of a flux-coupling type superconducting fault current limiter (SFCL) that has two coils connected in series via one iron core. Similar to the AC power system, the flux-coupling type SFCL in a DC system, which has the two coils connected with each other in series and the secondary coil connected with the superconducting element in parallel, remains in the superconducting state before a short-circuit accident occurs. This results in magnetic flux getting generated by the two windings connected in series offsetting each other and the induced voltage at the two windings remaining at zero. However, in the event of a short-circuit accident on the DC line, a resistance is generated on the superconducting element, so that the magnetic flux generated at the two windings no longer offsets each other. Therefore, a voltage is induced on the two windings, and the fault current is limited accordingly. As a result of configuring a DC short-circuit device and experimenting with this SFCL, we could confirm the DC fault current limiting effect of a flux-coupling type SFCL with two windings connected in series. In addition, we could establish performance conditions of the flux-coupling type SFCL in a DC system by inferring the fault current, operating current, and limited impedance equations according to the connection direction of the flux-coupling type SFCL with two windings connected in series and by analyzing fault current limiting degree, power burden, magnetic flux, and energy consumption for each element composing the SFCL.