Incorporation of facilitating agents is one of the promising strategies being researched in recent years to cross the Robeson bounds for gas separations using polymeric membranes. The ways in which such inclusions modify the performance of membranes are not always clear. Here, we study the performance of two glassy membranes, Polyfurfuryl alcohol and Polysulfone, in O 2 /N 2 and CO 2 /N 2 separations, with Cobalt phthalocyanine in insoluble and solubilized forms as the facilitating agent. The results show that in general, three effects are important: (1) a barrier effect, (2) a facilitation effect, and (3) morphological effects on the polymer matrix due to an incompatibility between the particles and the polymer. These results provide some insight into the action of facilitating agents in soluble and insoluble form, when used as membrane additives.