Homeopathy is controversial because medicines in high potencies such as 30c and 200c involve huge dilution factors (10⁶⁰ and 10⁴⁰⁰ respectively) which are many orders of magnitude greater than Avogadro's number, so that theoretically there should be no measurable remnants of the starting materials. No hypothesis which predicts the retention of properties of starting materials has been proposed nor has any physical entity been shown to exist in these high potency medicines. Using market samples of metal-derived medicines from reputable manufacturers, we have demonstrated for the first time by Transmission Electron Microscopy (TEM), electron diffraction and chemical analysis by Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES), the presence of physical entities in these extreme dilutions, in the form of nanoparticles of the starting metals and their aggregates.
Liquid-phase air oxidation of hydrocarbons, notably p-xylene, cumene, ethylbenzene/isobutane,
cyclohexane, and n-butane, is of great scientific, technological, and commercial importance. This
state-of-the-art paper covers the chemistry and engineering science aspects of these reactions.
The role of uncatalyzed reactions and metal ion and mixed metal ion catalysts with bromide
activation is discussed. An analysis is presented for the role of mass transfer in influencing the
rate of reaction and selectivity for the desired product. Different types of reactors that are used,
notably bubble-column reactors and mechanically agitated reactors, are analyzed, and a simple
basis is provided for selection of reactors. Some emerging oxidation systems, notably oxidation
of cycloalkenes (cyclohexene/cyclooctene/cyclododecene) and oxidation of isobutane under supercritical conditions, are presented. New strategies for conducting air oxidations, such as in
biphasic systems (including fluorous biphasic systems), biocatalysis, photocatalysis, etc., are
emerging and illustrate the considerable tailoring of the reaction microenvironment that is
becoming possible. In some cases, it may be possible to manipulate chemo-, regio-, and enantioselectivity in these reactions.
Extreme dilutions, especially homeopathic remedies of 30c, 200c, and higher potencies, are prepared by a process of serial dilution of 1:100 per step. As a result, dilution factors of 10(60), 10(400), or even greater are achieved. Therefore, both the presence of any active ingredient and the therapeutic efficacy of these medicines have been contentious because the existence of even traces of the starting raw materials in them is inconceivable. However, physicochemical studies of these solutions have unequivocally established the presence of the starting raw materials in nanoparticulate form even in these extreme (super-Avogadro, >10(23)) dilutions. In this article, we propose and validate a hypothesis to explain how nanoparticles are retained even at such enormous dilution levels. We show that once the bulk concentration is below a threshold level of a few nanograms/milliliter (ng/mL), at the end of each dilution step, all of the nanoparticles levitate to the surface and are accommodated as a monolayer at the top. This dominant population at the air-liquid interface is preserved and carried to the subsequent step, thereby forming an asymptotic concentration. Thus, all dilutions are only apparent and not real in terms of the concentrations of the starting raw materials.
The phase transformation of a zinc-2-methylimidazole-based zeolitic-imidazolate framework (ZIF), from a recently discovered ZIF-L to ZIF-8, was reported. ZIF-L is made up of the same building blocks as ZIF-8, having two-dimensional crystal lattices stacked layer-by-layer. Results indicated that the phase transformation occurs in the solid phase via the geometric contraction model (R2), a kinetic model new to ZIF. The phase transformation was monitored by means of ex situ powder X-ray diffraction, nitrogen sorption, Fourier transform infrared spectroscopy, selected-area electron diffraction, scanning electron microscopy, and in situ nuclear magnetic resonance spectroscopy. This work also demonstrates the first topotactic phase transformation in porous ZIFs, from a 2D layered structure to a 3D structure, and provides a new insight into metal−organic framework crystallization mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.