In this paper, we study the spreading of droplets of density-matched granular suspensions on the surface of a solid. Bidispersity of the particle size distribution enriches the conclusions drawn from monodisperse experiments by highlighting key elements of the wetting dynamics. In all cases, the relation between the dynamic contact angle and the velocity of the contact line is similar to that for a simple fluid, despite the complexity introduced by the presence of particles. We extract from this relation an apparent wetting viscosity of the suspensions that differs from that measured in the bulk. Dimensional analysis supported by experimental measurements yields an estimate of the size of the region inside the droplet where the value of the dynamic contact angle depends on a balance of viscous dissipation and capillary stresses. How particle size compares with this viscous cut-off length seems crucial in determining the value of the apparent wetting viscosity. With bimodal blends, the particle size ratio can be used to show the effects of the local structure and volume fraction at the contact line, both impacting the value of the corresponding wetting viscosity.