Abnormally slower diffusional processes than its internal structure relaxation have been observed in ring polymeric melt systems recently. A key structural feature in ring polymer melts is topological constraints which allow rings to assume a threading configuration in the melt phase. In this work, we constructed a lattice model under the assumption of asymmetric diffusivity between two threading rings, and investigated a link between the structural correlation and its dynamic behavior via Monte Carlo simulations. We discovered that the hierarchical threading configurations render the whole system to exhibit abnormally slow dynamics. By analyzing statistical distributions of timescales of threading configurations, we found that the decoupling between internal structure relaxation and diffusion is crucial to understand the threading effects on the dynamics of a ring melt. In particular, in the limit of small but threaded rings, scaling exponents of the diffusion coefficient D and timescale τ diff with respect to the degree of polymerization N agree well with that of the annealed tree model as well as our mean-field analysis. As N increases, however, the ring diffusion abruptly slows down to the glassy behavior, which is supported by a breakdown of the Stokes–Einstein relation.
When a small amount of polymer is added to a liquid capillary bridge between two solid surfaces under steady shear, the effective friction of the receding contact line increases. The critical factor of the determination of the contact line friction is the local polymer concentration near the contact line, which alters the liquid−solid interfacial tension. According to the modified equation of the molecular kinetic theory for polymer solutions, the capillary force has static and dynamic contributions from the local polymer concentration. We show that adding polymer to the solution leads to a large friction coefficient due to the high local polymer concentration. This work also finds that a capillary bridge under steady shear shares the contact line dynamics with an impacted droplet. The origin of the rebound suppression of a dilute polymer solution droplet is, therefore, the increased friction on a retracting contact line by strongly surface-adsorbed polymer molecules.
The Cassie-Baxter state of wetting explains a large equilibrium contact angle and the slippery dynamics of a water droplet on a superhydrophobic rough surface. It also causes a contact angle hysteresis (CAH) which cannot be fully described by dynamic wetting theories including the molecular kinetic theory (MKT). We analyze the contact line dynamics on a superhydrophobic surface in the framework of the MKT. Multi-body dissipative particle dynamics simulations of a capillary bridge confined between two rough surfaces under steady shear are performed. We find that, in addition to the contact line friction force from the MKT, an additional friction force contribution is needed on rough surface, which is almost constant at all contact line velocities. Thus, it is directly related to the CAH. The CAH originates not only from contact line pinning but also from the shear flow due to the strong friction in the central region of the liquid-solid interface away from the contact line. The analysis of the particle flow inside the capillary bridge shows that liquid particles trapped in the grooves of the surface texture actually move with the same velocity as the surface, and exert strong additional friction to other liquid particles. This work extends the MKT to rough surfaces, as well as to elucidate the origin of the CAH of a capillary bridge. The finding would help to better understand also other situations of dynamic wetting on superhydrophobic surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.