Claudin-2 is highly expressed in tight junctions of mouse renal proximal tubules, which possess a leaky epithelium whose unique permeability properties underlie their high rate of NaCl reabsorption. To investigate the role of claudin-2 in paracellular NaCl transport in this nephron segment, we generated knockout mice lacking claudin-2 (Cldn2 −/− ). The Cldn2 −/− mice displayed normal appearance, activity, growth, and behavior. Light microscopy revealed no gross histological abnormalities in the Cldn2 −/− kidney. Ultrathin section and freezefracture replica electron microscopy revealed that, similar to those of wild types, the proximal tubules of Cldn2 −/− mice were characterized by poorly developed tight junctions with one or two continuous tight junction strands. In contrast, studies in isolated, perfused S2 segments of proximal tubules showed that net transepithelial reabsorption of Na + , Cl -, and water was significantly decreased in Cldn2 −/− mice and that there was an increase in paracellular shunt resistance without affecting the apical or basolateral membrane resistances. Moreover, deletion of claudin-2 caused a loss of cation (Na + ) selectivity and therefore relative anion (Cl -) selectivity in the proximal tubule paracellular pathway. With free access to water and food, fractional Na + and Cl -excretions in Cldn2 −/− mice were similar to those in wild types, but both were greater in Cldn2 −/− mice after i.v. administration of 2% NaCl. We conclude that claudin-2 constitutes leaky and cation (Na + )-selective paracellular channels within tight junctions of mouse proximal tubules. mouse proximal tubule | tight junction | paracellular transport | Na/Cl transport | water transport T ight junctions (TJs) are circumferential seals around cells that selectively modulate paracellular permeability between extracellular compartments (1-3). On ultrathin-section electron microscopy, TJs appear as foci where the plasma membranes of neighboring cells make complete contact (4). On freeze-fracture electron microscopy, TJs appear as a continuous and anastomosing network of intramembranous particle strands (TJ strands) (5). These strands are mainly composed of linearly polymerized integral membrane proteins called claudins with molecular masses of ∼23 kDa (2, 3, 6). The claudin gene family contains more than 20 members in humans and in mice (2, 3, 7). The expression pattern of claudins varies considerably; most cell types express more than two claudins in various combinations to constitute mosaic TJ strands.Through the formation of TJ strands, claudins are directly involved in creating a primary barrier to the paracellular diffusion of solutes and water across epithelia (8). However, TJs are not a simple barrier: the barrier varies in tightness, measured by the transepithelial electrical resistance (R T ), and charge selectivity. Furuse et al. (9) reported that, when canine claudin-2 cDNA was transfected into high-resistance Madin-Darby canine kidney (MDCK) I cells primarily expressing claudins-1 and -4, the R T decreas...