A similar gene network was found to control chick myogenesis, in which Six1, Eya2 and Dach2 synergistically regulate the expression of myogenic genes such as myogenin and MyoD (Heanue et Six1 is a member of the Six family homeobox genes, which function as components of the Pax-Six-Eya-Dach gene network to control organ development. Six1 is expressed in otic vesicles, nasal epithelia, branchial arches/pouches, nephrogenic cords, somites and a limited set of ganglia. In this study, we established Six1-deficient mice and found that development of the inner ear, nose, thymus, kidney and skeletal muscle was severely affected. Six1-deficient embryos were devoid of inner ear structures, including cochlea and vestibule, while their endolymphatic sac was enlarged. The inner ear anomaly began at around E10.5 and Six1 was expressed in the ventral region of the otic vesicle in the wild-type embryos at this stage. In the otic vesicle of Six1-deficient embryos, expressions of Otx1, Otx2, Lfng and Fgf3, which were expressed ventrally in the wildtype otic vesicles, were abolished, while the expression domains of Dlx5, Hmx3, Dach1 and Dach2, which were expressed dorsally in the wild-type otic vesicles, expanded ventrally. Our results indicate that Six1 functions as a key regulator of otic vesicle patterning at early embryogenesis and controls the expression domains of downstream otic genes responsible for respective inner ear structures. In addition, cell proliferation was reduced and apoptotic cell death was enhanced in the ventral region of the otic vesicle, suggesting the involvement of Six1 in cell proliferation and survival. In spite of the similarity of otic phenotypes of Six1-and Shh-deficient mice, expressions of Six1 and Shh were mutually independent.
Claudin-2 is highly expressed in tight junctions of mouse renal proximal tubules, which possess a leaky epithelium whose unique permeability properties underlie their high rate of NaCl reabsorption. To investigate the role of claudin-2 in paracellular NaCl transport in this nephron segment, we generated knockout mice lacking claudin-2 (Cldn2 −/− ). The Cldn2 −/− mice displayed normal appearance, activity, growth, and behavior. Light microscopy revealed no gross histological abnormalities in the Cldn2 −/− kidney. Ultrathin section and freezefracture replica electron microscopy revealed that, similar to those of wild types, the proximal tubules of Cldn2 −/− mice were characterized by poorly developed tight junctions with one or two continuous tight junction strands. In contrast, studies in isolated, perfused S2 segments of proximal tubules showed that net transepithelial reabsorption of Na + , Cl -, and water was significantly decreased in Cldn2 −/− mice and that there was an increase in paracellular shunt resistance without affecting the apical or basolateral membrane resistances. Moreover, deletion of claudin-2 caused a loss of cation (Na + ) selectivity and therefore relative anion (Cl -) selectivity in the proximal tubule paracellular pathway. With free access to water and food, fractional Na + and Cl -excretions in Cldn2 −/− mice were similar to those in wild types, but both were greater in Cldn2 −/− mice after i.v. administration of 2% NaCl. We conclude that claudin-2 constitutes leaky and cation (Na + )-selective paracellular channels within tight junctions of mouse proximal tubules. mouse proximal tubule | tight junction | paracellular transport | Na/Cl transport | water transport T ight junctions (TJs) are circumferential seals around cells that selectively modulate paracellular permeability between extracellular compartments (1-3). On ultrathin-section electron microscopy, TJs appear as foci where the plasma membranes of neighboring cells make complete contact (4). On freeze-fracture electron microscopy, TJs appear as a continuous and anastomosing network of intramembranous particle strands (TJ strands) (5). These strands are mainly composed of linearly polymerized integral membrane proteins called claudins with molecular masses of ∼23 kDa (2, 3, 6). The claudin gene family contains more than 20 members in humans and in mice (2, 3, 7). The expression pattern of claudins varies considerably; most cell types express more than two claudins in various combinations to constitute mosaic TJ strands.Through the formation of TJ strands, claudins are directly involved in creating a primary barrier to the paracellular diffusion of solutes and water across epithelia (8). However, TJs are not a simple barrier: the barrier varies in tightness, measured by the transepithelial electrical resistance (R T ), and charge selectivity. Furuse et al. (9) reported that, when canine claudin-2 cDNA was transfected into high-resistance Madin-Darby canine kidney (MDCK) I cells primarily expressing claudins-1 and -4, the R T decreas...
By cable analysis and intracellular microelectrode impalement in the in vitro perfused renal tubule, we identified a-and f,-intercalated (IC) cells along the rabbit distal nephron segments, including the connecting tubule (CNT), the cortical collecting duct (CCD), and the outer medullary collecting duct in the inner stripe (OMCDj)
Streptozotocin-induced renal fibrosis, PAI-1 expression, TGF-beta1 expression, and macrophage infiltration occur via mineralocorticoid receptor, and spironolactone ameliorates renal fibrosis presumably via the inhibition of macrophage infiltration, PAI-1 expression, and TGF-beta1 expression in streptozotocin-induced early diabetic injury.
BackgroundKlotho is a single-pass transmembrane protein, which appears to be implicated in aging. The purpose of the present study was to characterize the relationship between the soluble Klotho level and renal function in patients with various degrees of chronic kidney disease (CKD).MethodsThe levels of soluble Klotho in the serum and urine obtained from one hundred thirty-one CKD patients were determined by a sandwich enzyme-linked immunosorbent assay system.ResultsThe amount of urinary excreted Klotho during the 24 hr period ranged from 1.6 to 5178 ng/day (median 427 ng/day; interquartile range [IR] 56.8-1293.1), and the serum Klotho concentration ranged from 163.9 to 2123.7 pg/ml (median 759.7 pg/ml; IR 579.5-1069.1). The estimated glomerular filtration rate (eGFR) was significantly correlated with the log-transformed values of the amount of 24 hr urinary excreted Klotho (r = 0.407, p < 0.01) and the serum Klotho levels (r = 0.232, p < 0.01). However, a stepwise multiple regression analysis identified eGFR to be a variable independently associated only with the log-transformed value of the amount of 24-hr urinary excreted Klotho but not with the log-transformed serum Klotho concentration. Despite the strong correlation between random urine protein-to-creatinine ratio and the 24 hr urinary protein excretion (r = 0.834, p < 0.01), a moderate linear association was observed between the log-transformed value of the amount of 24 hr urinary excreted Klotho and that of the urinary Klotho-to-creatinine ratio (Klotho/Cr) in random urine specimens (r = 0.726, p < 0.01).ConclusionsThe amount of urinary Klotho, rather than the serum Klotho levels, should be linked to the magnitude of the functioning nephrons in CKD patients. The use of random urine Klotho/Cr as a surrogate for the amount of 24-hr urinary excreted Klotho needs to be evaluated more carefully.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.