The aim of this study was to investigate whether the ruminal epithelium activates a local inflammatory response following a short-term subacute ruminal acidosis (SARA) challenge. Seven ruminally cannulated, nonpregnant, nonlactating beef heifers, fed a baseline total mixed ration (TMR) with 50:50 forage-to-concentrate ratio, were used in a crossover design with 2 periods and 2 treatments: SARA and control (CON). Induction of SARA included feed restriction (25% of dry matter intake [DMI] for 24 h) followed by a grain overload (30% of baseline DMI) and provision of the full TMR; whereas, the CON group received the TMR ad libitum. Ruminal pH was recorded using indwelling probes, and ruminal lipopolysaccharide (LPS) concentration was measured daily following the challenge until d 6. Biopsies of ruminal papillae from the ventral sac were collected on d 2 and 6 after the grain overload. Transcript abundance of genes associated with acute inflammation was measured by quantitative real-time PCR, normalized to the geometric mean of 3 stable housekeeping genes. Target genes included toll-like receptor-2 (TLR2), TLR4, TLR9, tumor necrosis factor-α (TNFA), prostaglandin endoperoxide synthase-1 (PTGS1), PTGS2 transforming growth factor β-1 (TGFB1), and 4 intermediate enzymes of leukotriene synthesis (ALOX5, ALOX5AP, LTA4H, and LTC4S). Protein localization and expression of TLR4 were quantified by image analysis of fluorescence intensity. Statistical analysis was performed using as a crossover design with fixed effects of treatment, day, and the treatment × day interaction with the random effect of day within period. Ruminal pH was below 5.6 for 4.5 h/d and below 5.8 for 6.9 h/d in the SARA group compared with 22 and 72 min/d, respectively, for CON. Ruminal LPS concentration peaked on d 2 in SARA heifers at 51,481 endotoxin units (EU)/mL compared with 13,331 EU/mL in CON. Following grain overload, small but statistically significant decreases in the transcriptional abundance of TLR2, TLR4, TNF, PTGS2, ALOX5, and ALOX5AP were seen in SARA versus CON heifers. A functionally relevant decrease in TLR4 expression in SARA heifers compared with CON was confirmed by a decrease in fluorescence intensity of the corresponding protein following immunohistofluorescent staining of papillae. The study results indicate a suppression of the inflammatory response in the ruminal epithelium and suggest that the response is tightly regulated, allowing for tissue recovery and return to homeostasis following SARA.