High-pressure processing (HPP) is used to increase meat safety and shelf-life, with conflicting quality effects depending on rigor status during HPP. In the seafood industry, HPP is used to shuck and pasteurize oysters, but its use on abalones has only been minimally evaluated and the effect of rigor status during HPP on abalone quality has not been reported. Farm-raised abalones (Haliotis rufescens) were divided into 12 HPP treatments and 1 unprocessed control treatment. Treatments were processed pre-rigor or post-rigor at 2 pressures (100 and 300 MPa) and 3 processing times (1, 3, and 5 min). The control was analyzed post-rigor. Uniform plugs were cut from adductor and foot meat for texture profile analysis, shear force, and color analysis. Subsamples were used for scanning electron microscopy of muscle ultrastructure. Texture profile analysis revealed that post-rigor processed abalone was significantly (P < 0.05) less firm and chewy than pre-rigor processed irrespective of muscle type, processing time, or pressure. L values increased with pressure to 68.9 at 300 MPa for pre-rigor processed foot, 73.8 for post-rigor processed foot, 90.9 for pre-rigor processed adductor, and 89.0 for post-rigor processed adductor. Scanning electron microscopy images showed fraying of collagen fibers in processed adductor, but did not show pressure-induced compaction of the foot myofibrils. Post-rigor processed abalone meat was more tender than pre-rigor processed meat, and post-rigor processed foot meat was lighter in color than pre-rigor processed foot meat, suggesting that waiting for rigor to resolve prior to processing abalones may improve consumer perceptions of quality and market value.