The raising demand of fish for human consumption has caused a rise in fish cultivation to become a more intense activity and has increased the need for fish feed formulas for aquaculture. Tilapia are aquatic organisms with moderate protein requirements. One of the traditional ingredients used to develop protein diets is fish meal. Despite its high cost, this supply is of high demand for both aquaculture and terrestrial animals. Efforts to seek for alternative sources of conventional and unconventional proteins are ongoing. The purpose of this study is to review alternative sources of proteins with potential to partially or fully substitute fish meal in tilapia feed. Also, it addresses the challenges that aquaculture feeding is facing regarding the substitution of fish meal with proteins from plant sources.
The maturity of two selections of soursop (G1 and G2) from Nayarit, Mexico, was evaluated under environmental conditions at 22°C and refrigeration at 15°C stored for 6 and 8 days, respectively. Maximum CO2and ethylene values were present on the fifth and sixth day. The fruits exposed at 15°C had a significantly lower weight loss (5%) and showed no chilling injury. The firmness of two selections decreased more than 90%. The concentration of TSS increased to 5.3 to 15°Brix, and the titratable acidity was higher for fruit stored at 22°C. The highest concentration of phenols was recorded on the fourth day of storage at 22°C. The enzymatic activity of PPO was increased from physiological ripening to consumption ripening for both treatments. The two selections stored at 22°C registered the highest level of PME activity at ripeness. Shelf life was increased by up to 8 days (4 days at 15°C plus 4 days at 22°C) without causing chilling injury or alterations in the ripening process of the fruits. No significant differences were observed between the two selections evaluated; postharvest handling was considered to be similar; however, it would be advisable to evaluate other technologies combined with refrigeration.
Utilization of lignocellulosic materials for the production of value-added chemicals or biofuels generally requires a pretreatment process to overcome the recalcitrance of the plant biomass for further enzymatic hydrolysis and fermentation stages. Two of the most employed pretreatment processes are the ones that used dilute acid (DA) and alkaline (AL) catalyst providing specific effects on the physicochemical structure of the biomass, such as high xylan and lignin removal for DA and AL, respectively. Another important effect that need to be studied is the use of a high solids pretreatment (≥15%) since offers many advantaged over lower solids loadings, including increased sugar and ethanol concentrations (in combination with a high solids saccharification), which will be reflected in lower capital costs; however, this data is currently limited. In this study, several variables, such as catalyst loading, retention time, and solids loading, were studied using response surface methodology (RSM) based on a factorial central composite design of DA and AL pretreatment on agave bagasse using a range of solids from 3 to 30% (w/w) to obtain optimal process conditions for each pretreatment. Subsequently enzymatic hydrolysis was performed using Novozymes Cellic CTec2 and HTec2 presented as total reducing sugar (TRS) yield. Pretreated biomass was characterized by wet-chemistry techniques and selected samples were analyzed by calorimetric techniques, and scanning electron/confocal fluorescent microscopy. RSM was also used to optimize the pretreatment conditions for maximum TRS yield. The optimum conditions were determined for AL pretreatment: 1.87% NaOH concentration, 50.3 min and 13.1% solids loading, whereas DA pretreatment: 2.1% acid concentration, 33.8 min and 8.5% solids loading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.