The study aimed to determine the addition of green tea extract (GTE) in extender on the quality and DNA mutation of post-thawed Kacang buck sperm. The sperm DNA mutation was observed on nicotinamide adenine dinucleotide hydride (NADH) dehydrogenase 1 (ND1) of mitochondrial Deoxyribonucleic Acid (mtDNA). A pool of 12 Kacang buck ejaculates was diluted in skim milk-egg yolk extender contained 0, 0.05, 0.10, and 0.15 mg of GTE/100 mL for T0, T1, T2, and T3 group, respectively. Each of the aliquot groups was packaged in 0.25 mL French mini straw contained 60 million alive sperm and froze according to the protocol. The ND1 mtDNA amplification of samples was carried out Polymerase Chain Reaction machine, followed by DNA sequencing using the Sanger method. Meanwhile, the phylogenetic tree was constructed using the neighbor-joining (NJ) method with MEGA 7.0 software. The results showed that the T2 group maintained the highest quality for Kacang buck post-thawed semen. There was the highest percentages of sperms viability, motility, intact plasma membrane (IPM), the lowest of malondialdehyde (MDA) concentration, sperm DNA fragmentation (SDF), the total and types of ND1 mtDNA mutation frequency. The phylogenetic tree analysis revealed that the clade of the T2 group was most closely related to the sequence reference. However, there was no correlation between the semen quality parameters (sperm viability, motility, IPM, MDA concentration, and SDF) with ND1 mtDNA mutation of post-thawed Kacang buck semen. It could be concluded that GTE was useful as an antioxidant for Kacang buck semen extender for frozen sperm.