Abstract--The dissolution behavior of five noncrystalline oxides, montmorillonite, kaolinite, chlorite, and sepiolite in a basic tiron solution was studied at pH 10.5 and 80"C. The results show that for montmorillonite the concentrations of A1 and Fe ions dissolved in the treating solution were diminished because of cation-exchange reactions of the sample in the suspension. To explain these observations, a mass-balance equation for the specified cation in solution was formulated, which consisted of both a dissolution term and an ion-exchange term. The several parameters of this differential equation were fitted to allow the calculated results to represent the experimental findings. Using these values, an equation lacking an ion-exchange term was also solved numerically. Thus, a dissolution curve was described, which would have been obtained had no cation exchange taken place. From these equations, the error resulted from the cation-exchange capacity of samples in chemical dissolution methods can be evaluated. According to this estimation, and assuming the value for a 1-hr treatment, an error of about 15% was determined for the amount of noncrystalline components contained in the specimen in this investigation.