Purpose. The paper is aimed at studying the morphodynamic features of the Bakalskaya Spit evolution being influenced by the sea wind waves and swell, namely assessment of inter-annual variations in the alluvial (erosion) areas of the Bakalskaya Spit coastline, analysis of inter-annual variability of the wind wave parameters, determination of the surface wave characteristics (or a combination of a few ones) responsible for the processes of the bottom material erosion or accumulation in the coastal zone. Methods and Results. Based on the analysis of satellite images for 1984–2016, the areas of the bottom material accumulation or erosion of the Bakalskaya Spit coastline were determined. Application of the spectral wave model permitted to obtain time series of the main parameters of wind waves and swell (significant wave heights and propagation directions) in the Bakalskaya Spit coastal zone with the 1 hr time resolution for the period from 1984 to 2016. The characteristics of surface waves responsible for the coastline deformation were revealed using the discriminant analysis. Conclusions. Analysis of satellite images of the spit made it possible to distinguish three periods in the history of the Bakalskaya Spit evolution: 1985–1997, 1998–2007 and 2007–2016. The first period was characterized by relative stability. The strongest erosion took place in 1998; after that the alluvial and erosion cases alternated for 10 years weakly tending to general erosion that constituted the second period. The third one that began in 2007 can be defined as the period of spit degradation accompanied by the irreversible loss of beach material. The basic parameters conditioning hydrodynamics of the Bakalskaya Spit water area are: total duration of storms; average and maximum values of significant heights of wind waves and swell. Statistical characteristics of the wind waves’ parameters are of a fairly strong inter-annual variability. According to the average and maximum indices, the wind waves directed close to the normal to the coastline (WSW and WNW) are the most developed. The applied discriminant analysis permitted to draw a statistically reliable conclusion that the direction of the final (average annual) wave impact on the coastal zone, conditioning the processes of sand accumulation or erosion was set by the waves directed to NNW, at that the swell contribution was dominant. The impact degree is conditioned by strong storms with the directions close to the normal to the coastline, namely, the WSW ones