Coacervation is widely used in formulations to induce a beneficial character to the formulation but non-equilibrium effects are often manifest. Electrophoretic (eNMR), pulsedgradient spin-echo NMR (PGSE-NMR) and small-angle neutron scattering (SANS) have been used to quantify the interaction between low molecular cationic poly(diallyldimethylammonium chloride) (PDADMAC) and the anionic surfactant sodium dodecylsulphate (SDS) in aqueous solution as a model for the precursor state to such nonequilibrium processes. The NMR data show that within the low surfactant concentration onephase region, an increasing surfactant concentration leads to a reduction in the charge on the polymer and a collapse of its solution conformation, attaining minimum values coincident with the macroscopic phase separation boundary. Interpretation of the scattering data reveals how the rod-like polymer changes over the same surfactant concentration window, with no discernible fingerprint of micellar type aggregates, rather the emergence of disc-like and lamellar structures. At the highest surfactant concentration, the emergence of a weak Bragg peak in both the polymer and surfactant scattering suggest these pre-cursor disc and lamellar structures evolve into paracrystalline stacks which ultimately phase separate. Addition of the non-ionic surfactant hexa(ethylene oxide) dodecyl ether (C12E6) to the system seems to have little effect on the PDADMAC/SDS interaction as determined by NMR, merely displacing the