Influences of structural characteristics of phenolic compounds on the properties of potato starch were investigated, and their effects on the quality, function, and digestion of potato starch noodles were further determined. All testing phenolic compounds (including protocatechuic acid [PA], naringin[NA], and tannic acid [TA]) exhibited the significant capability to modify the thermal properties, rheological properties, and enzymatic hydrolysis of potato starch. The high amount of hydroxyl groups, the presence of glycoside structure, appropriate molecular size, and steric hindrance were beneficial to enhance their effects on potato starch. In addition, by changing the microstructure of starch hydrocolloids, PA, NA, and TA could affect the color, texture properties, and cooking properties of potato starch noodles. Meanwhile, PA and TA could endow potato starch noodles with remarkable antioxidant activity. Furthermore, the in vitro digestion of potato starch noodles was obviously inhibited by phenolic compounds, especially for TA. All present results suggested that structural characteristics of phenolic compounds affected their interaction affinity and combination degree with potato starch molecules, so as to modify the properties of starch and affect the quality, function, and digestion of starchy foods, which showed the valuable applications in food and chemical industries.