For a very long time, debris particles have been blamed to causing serious problems in machine-element contacts such as those of bearings and gears. This involves a huge number of mechanisms and machines worldwide. The financial cost associated with machinery failure under such circumstances is enormous. Past research has identified the main mechanisms governing damage from debris particles. A few theoretical models have been built on the experience accumulated on damage mechanics. The capabilities of said models vary a lot. The model originally developed by this author in the 1990s was recently expanded. The previous version of the model, which was published in this journal in May 2012, offered a number of innovative features to calculate spherical-particle indentation and soft abrasion in lubricated rolling-sliding contacts. It was experimentally validated following a rigorous programme. However, it neglected frictional heating from particle extrusion. This study significantly expands the previous model of the author by integrating thermal effects. It includes flash temperature calculations with moving sources of heat, dynamic heat partition, three-dimensional conduction and convection, and thermally anisotropic surfaces with temperature-dependent thermal and mechanical properties, all integrated in the elastoplastic model of indentation and abrasion. These are in addition to model features such as nonlinear strain hardening, strain-gradient plasticity, particle work hardening, generalised local kinematics, pile-up/sink-in plasticity effects and many more. The same rigorous experimental verification programme as in the previous model of the author is used here, too. It is shown that in some cases, the theoretical results on dent geometry are even closer to the experimental ones than with the isothermal model of the author. Furthermore, the thermal analysis reveals that extreme frictional heating can take place, often leading to melting wear in a fraction of a millisecond. The formation of dimples inside and outside main dents, which have been shown experimentally and verified theoretically by this author’s previous model, is revisited in light of frictional heating. A parametric study shows the effects of particle size and hardness, kinetic friction coefficients, and strain hardening on dent geometry and flash temperatures, including effects on particle and surface melting. Finally, the reality of flash temperatures is explored.