We have studied the equation of states and vibrational properties of FeO using DFT based plane-wave pseudopotential (PW-DFT) within the generalized gradient approximation. The calculated cohesive properties at ambient condition, namely, lattice constant (a0), bulk modulus (B0) and its first pressure derivative (), are reported for B1-phase of FeO, in agreement with previous experimental and other theoretical results. A linear-response approach to the density functional theory was used to derive the phonon frequencies and phonon density of state (p-dos). Further, in order to calculate both static and dynamic equations of states, nearest-neighbour second-moment tight-binding energy model (TB-SMA) was used. Parameters of the present TB-SMA model were determined by the presentab initiopseudopotential calculations. It is found that the present simple TB-SMA scheme is able to mimic shock Hugoniot for such oxides correctly.