Heavy metal pollution, mainly originating from textile waste containing synthetic dyes and stabilizers such as Fe, alum, and lime, poses serious risks to health and the environment. To overcome this problem, this research explores the use of activated carbon for heavy metal reduction. Empty palm oil fruit bunches (EFB) offer a promising source of activated carbon due to their high lignocellulose content and functional groups (-OH and -COOH) that enhance heavy metal adsorption. In addition, carbide waste, which is classified as hazardous and toxic waste, poses an ecological threat if disposed of incorrectly. This research focuses on the use of EFB waste and carbide to reduce Fe metal in Fe metal synthesis waste. Various adsorbent ratios (2:2.5, 2.5:2, and 2.5:2.5) and contact times ranging from 30 to 150 min were investigated, with an initial metal synthesis waste concentration of 40 mg/L. The findings showed that longer contact times resulted in the removal of large amounts of Fe(II) metal, with rates reaching 94.325%. The increase in the pH of the adsorbent mixture is caused by the alkaline nature of carbide waste in activated carbon. The Langmuir isotherm model provided the best fit to the data, with a correlation Equation of y = 0.3882x + 1.4823 (R 2 = 0.995, R L = 0.556), which shows the effectiveness of the TKS-carbide waste mixture in reducing Fe(II) ions in the waste textile. The Freundlich isotherm model also showed a reasonable fit, with a correlation equation of y = -0.2804x -0.0133 (R 2 = 0.95). In summary, EFB-carbide waste adsorbent is a successful, consistent, and environmentally friendly solution for the reduction of heavy metals in textile waste.