In this investigation, we explore the harnessing of bamboo shoot residues (BSR) as a viable source for ruminant feed through fungal treatment, with the overarching objective of elevating feed quality and optimizing bamboo shoot utilization. The white-rot fungi (Wr.fungi), Aspergillus niger (A.niger), and its co-cultures (A.niger&Wr.fungi) were employed to ferment BSR. And the impact of different fermentation methods and culture time on the chemical composition (Crude protein Ash, neutral detergent fibre and acid detergent fibers), enzyme activity (Cellulase, Laccase, Filter paperase and Lignin peroxidase activities), and rumen digestibility in vitro were assessed. The findings reveal a nota ble 30.39% increase in crude protein in fermented BSR, accompanied by respective decreases of 13.02% and 17.31% in acid detergent fiber and neutral detergent fibre content. Enzyme activities experienced augmentation post-fermentation with A.niger&Wr.fungi. Specifically, the peak Cellulase, Laccase, and Lignin peroxidase activities for BSR with Wr.fungi treatment reached 748.4 U/g, 156.92 U/g, and 291.61 U/g, respectively, on the sixth day of fermentation. Concurrently, NH3-N concentration exhibited an upward trend with prolonged fermentation time. Total volatile fatty acids registered a decline, and the Acetate/Propionate ratio reached its nadir after 6 days of fermentation under the A.niger&Wr.fungi treatment. These outcomes furnish a theoretical foundation for the development of ruminant feeds treated via fungal co-culture.