Die Stabilitat einer Wirbeljhhe zwiechen zwei rotierenden hydromagnetiacln Fliiaeigkeiten ?nit Lenaorieller Ledfahigkeit wird uniersucht. Ebenso wird die Stabilitiit dea Systems fur den Fall diskutiert, dab es anjanglich ruhf. aber einer zur Trennflkhe senkrechten Beschleunigung unterliegt. Man findet, dab die tensorielle Leitfahigkeit dus System destabilisiert, dap aber die Rotation je nuch der G n g e der Storungswellen stabilisierend oder destabilisierend wirken kann.The stability of a vortex sheet between tzvo hydromagnetic, rotating liquids having tensor conductivity i s examined.The stability of the system without initial motion but subject to an acceleration perpendicular to the interface is also discussed. It is found that tensor condudivity destabilizes the system but rotation might be stabilizing or destabilizing depending upon the wave length oj perturbation. ~CCJle;lyeTCR CTa6UJbHOCTb BUXpeBOfi IIOBepXHOCTU Memay SByMR BpaUlaIOUlUMMCJl rUZpOMarH€iTIlblMU iKU,lKOCTJlMki C TeH30pHOfi npOBOaHMOCTblo. IIOnBepI'aeTCH TalC Hie UkiCKYCCHR CTa6ki.lbHOCTb Cki CTeMM HOCTU pa3nena yCKOpeHUlo. HatkneHo, '(TO TeH30pHaR IIpOBOnkiMOCTb IIPMBOSUT CMCTeMy K HeYCTOfilIU-BOCTM U 'IT0 BpaUeHMe B 3aBMCMMOCTki OT RJlMHLI BOJIII ~MpKyJIRIUiki MOmeT OKa3aTI. KaK M c~a6nnki3u-nnrr cayqaH, ecmi m a , iraxonrrcb nepBoHa4anbrio n noKoe, IionnemuT nepneHnuriyJirrpnoMy K nonepxpyloqee TaiC H ~e c~a 6~~1~3~p y w i i~e e BnuHHue.
Basic Equations and the Dispersion RelationConsider two incompressible, inviscid, homogeneous hydromagnetic fluids separated by a plane interface z = 0. The fluids occupy the semi-infinite regions z 2 0 and are respectively denoted by the suffixes +, -.We assume the system t o be subjected t o an acceleration g (0, 0, -g) which may account for the gravitational field or the curvature of the field lines. The whole configuration is rotating uniformly with angular velocity f,,(O, Q, 0). Both thc fluids carry a uniform impressed magnetic field H and have initial streaming velocities U* in the zy-plane. The equations for each fluid in a rotating frame of reference are [lo]: