Sustainable agriculture is essential for man's survival, especially given our rapidly increasing population. Expansion of agriculture into remaining areas of natural vegetation is undesirable, as this would reduce biodiversity on the planet. Maintaining or indeed improving crop yields on existing farmed land, whether on a smallholder scale or on larger farms, is thus necessary. One of the limiting factors is often weed control; biological control of weeds is generally of limited use and mechanical control is either often difficult with machinery or very laborious by hand. Thus the use of herbicides has become very important. Minimum cultivation can also be important, as it reduces the power required to work the soil, limits erosion and helps to maintain the organic matter content of the soil. This last aspect helps preserve both the structure of soil and its populations of organisms, and also sustains the Earth's soil as a massive sink for carbon, an important consideration in the light of global warming. The introduction of the bipyridinium herbicide paraquat in the early 1960s greatly facilitated weed control in many crops. Paraquat has the unusual property of being active only by direct spray onto plants and not by uptake from soil in which strong binding deactivates it. Together with its rapid action in light in killing green plant tissue, such properties allow paraquat to be used in many crops, including those grown by low-tillage methods. This paper reviews the ways in which agricultural systems have been and are being developed to make use of these properties, and provides a risk/benefit analysis of the world-wide use of paraquat over nearly 40 years.