A detailed computational study of the intramolecular Alder-ene reaction of different 1,6-dienes at M06-2X(PCM)/TZ2P level of theory has been performed. We want to understand the influence of enophile-geminal substitution pattern in the cis : trans selectivity of the cyclization process. Our analysis of the reaction coordinate by means of activation strain model of chemical reactivity (ASM-distortion interaction model) reveals that the cis-selectivity observed for unactivated reagents is related with high stabilizing orbital interaction and lower strain energy, consequence of an early transition structure. On the other hand, the presence of activating groups increases the asynchronicity of the transition structures and reduces the activation barrier due to more stabilizing orbital and electrostatic interactions, favoring trans-selectivity.