There is an increasing interest on the application of ZnO nanorods in photocatalysis and many growth methods have been applied, in particular the spray pyrolysis technique which is attractive for large scale production. However it is interesting to know if the nanorod morphology is the best considering its photocatalytic activity, stability, and cost effectiveness compared to a nonoriented growth. In this work we present a systematic study of the effect of the precursor solution (type of salt, solvent, and concentration) on the morphology of sprayed ZnO films to obtain nanoflakes and nanorods without the use of surfactants or catalysts. The surface properties and structural characteristics of these types of films were investigated to elucidate which morphology is more favorable for photocatalytic applications. Wettability and photocatalytic experiments were carried out in the same conditions. After UV irradiation both morphologies became hydrophilic and achieved a dye discoloration efficiency higher than 90%; however, the nanoflake morphology provided the highest photocatalytic performance (99% dye discoloration) and stability and the lowest energy consumption during the synthesis process. The surface-to-volume ratio revealed that the nanoflake morphology is more adequate for photocatalytic water treatment applications and that the thin nanorods should be preferred over the large ones.