-It has been recognized that the use of nanoparticles (NPs) in the cosmetic industry results in products with better efficacy and functionality. However, recent advances in molecular toxicology have revealed that NP exposure can promote cytotoxicity and oxidative damage, which has raised health concerns in the use of NPs in personal care products. Nevertheless, the mechanistic basis for the toxicity and safety of cosmetic NPs is poorly understood. The goal of the study was to determine the cytotoxicity and intracellular distribution of titanium dioxide (TiO 2 ) NPs containing fatty acid composites (palmitoleic acid, palmitic acid, stearic acid and oleic acid) commonly used in cosmetic products. Two types of cells, human fibroblast skin cells and adenocarcinoma lung cells, were exposed to either bare TiO 2 NPs or TiO 2 NPs mixed with fatty acids for up to 48 hr. NMR analysis confirmed that the fatty acid composites remained in the NPs after wash. The cytotoxicity of TiO 2 NPs was determined by cell viability measurement using quantitative confocal microscopy, and the localization of two different forms of TiO 2 NPs were assessed using electron spectroscopic imaging with transmission electron microscopy. TiO 2 NPs containing fatty acids posed significantly reduced cytotoxicity (80-88% decreases) than bare NPs in both cell types. Furthermore, there was less intracellular penetration of the NPs containing fatty acid composites compared with bare NPs. These results provide important insights into the role of fatty acids in protecting the cells from possible toxicity caused by NPs used in the production of cosmetic products.