In this paper, single-layer coated polyester–cotton composites were prepared using PU-2540 waterborne polyurethane resin as the adhesive, graphite and silicon carbide as functional particles, and adopting a coating technology on the plain polyester–cotton fabric. First, the single-layer graphite-coated polyester cotton composite was prepared with graphite as the functional particle, and the influence of graphite content on the reflection loss and shielding effectiveness was studied. When the applied electric field frequency is 1610 MHz and the graphite content is 40 wt%, the minimum reflection loss is −26 dB; when the applied electric field frequency is 39.9 MHz and the graphite content is 50 wt%, the maximum shielding effectiveness is 12 dB. Then the single-layer silicon carbide-coated polyester–cotton composite was prepared with silicon carbide as the functional particle, and the influence of silicon carbide content on the reflection loss and shielding effectiveness was studied. With the applied electric field in the range 500∼3000 MHz, the greater the content of silicon carbide, the smaller the reflection loss, the better the wave-absorbing ability, the larger the shielding effectiveness, and the better the shielding performance. Finally, the single-layer graphite/silicon carbide-coated polyester–cotton composites were prepared by doping graphite and silicon carbide in different proportions, and the influence of doping ratio on dielectric properties, reflection loss, and shielding effectiveness was investigated. The real part of the dielectric constant of the material was highest – that is, the polarization ability of the material was best when there were only graphite particles in the doping medium and the silicon carbide content was 0. The imaginary part of the dielectric constant and the tangent of loss angle of the material were the highest – that is, the loss and attenuation ability of the material were best – when the doping ratio of graphite to silicon carbide is 4:1. With the applied electric field in the range 500∼3000 MHz, and with increasing graphite content, the reflection loss of the material became smaller, showing an enhanced wave-absorbing property, and the shielding effectiveness of the material increased, showing an enhanced shielding performance.