miR-23b is a multifunctional microRNA that contributes to the regulation of multiple signaling pathways. It has been reported that miR-23b prevents multiple autoimmune diseases through the regulation of inflammatory cytokine pathways. In addition, the function and underlying mechanisms of miR-23b on sepsis are currently being investigated. In the present study, miR-23b inhibitor and mimics sequences were transfected into human vascular endothelial cells to inhibit and upregulate the expression of miR-23b, respectively. In addition, respective negative control (NC) sequences were transfected. The expression of miR-23b was found to be downregulated in the cells transfected with the mimics NC or inhibitor NC sequences following stimulation with lipopolysaccharide (LPS; P<0.01); however, higher expression levels were maintained in the cells transfected with the mimics sequence and very low levels were observed in the cells transfected with the inhibitor sequence. In addition, the expression levels of nuclear factor (NF)-κB, tumor necrosis factor (TNF)-α, interleukin (IL)-6, intercellular adhesion molecule (ICAM)-1, E-selectin and vascular cell adhesion molecule (VCAM)-1 were shown to increase following induction by LPS in the cells transfected with inhibitor/mimics NC sequences (P<0.05). However, the expression levels of these inflammatory factors decreased in the cells transfected with the mimics sequence, and increased to a greater degree in the cells transfected with the inhibitor sequence, as compared with the inhibitor NC sequences (P<0.05). Therefore, miR-23b may play a significant role in the pathogenesis and progression of sepsis by inhibiting the expression of inflammatory factors, including NF-κB, TNF-α, IL-6, ICAM-1, E-selectin and VCAM-1.