Commercial citrus trees are composed of a scion grafted onto a rootstock. Because grafting is one of the most expensive methods of plant propagation, grafting efficiency is of large practical importance. The purpose of this study was to improve citrus bud-grafting efficiency. The effects of six factors that included BA, Tween-20, DMSO, type of solvent (water or EtOH), cardinal orientation of grafted bud, and type of supplemental light (LED, metal halide, none) on forty-four bud-grafting measures were determined using a multifactor design of experiment approach. Four measures useful for identifying treatments of practical value included the number of rootstock axial buds that formed shoots, the percentage of grafted buds that formed shoots, the length of the longest shoot formed from the grafted buds, and the total leaf area of the grafted bud shoots. The factors that most affected these responses were no supplemental light to minimize the number of shoots from rootstock axial buds, a south orientation and 5 mM BA to maximize the percentage of grafted buds that formed shoots, a north orientation and 5 mM BA to maximize the length of the longest grafted bud shoot, and 5 mM BA to maximize the leaf area of the grafted bud shoots.