ACE inhibitory dipeptides from Xerocomus badius fermented shrimp processing waste were isolated with ethanol, macroporous resin, chloroform, and Sephadex G-10 in sequence and identified by LC-MS/MS system coupled with electrospray ionization source. Molecular docking was performed for exploring the mechanism of their inhibitions. The results showed that the identified ACE inhibitory dipeptides were Cys-Cys and Cys-Arg with IC50 values of 4.37 ± 0.07 and 475.95 ± 0.11 μM, respectively. The difference between ACE inhibitor potency of Cys-Cys and Cys-Arg could be explained by results of molecular docking. Cys-Cys formed crucial coordination between carboxyl oxygen and Zn(II), hydrogen bonds with residues Ala354(O), Ala356(HN), and Tyr523(OH), and a bump with the residue His387(NE2) at the active site of ACE. There was no coordination, except for 5 hydrogen bonds (at residues His353, Ala354, Glu384, Glu403, and Arg522) and a bump (Glu411) between Cys-Arg and active site of ACE. These findings highlighted that Cys-Cys could be considered as a novel potent ACE inhibitor, and coordination between its carboxyl oxygen and Zn(II) played significant role in defining its ACE inhibitor potency.