Purpose
This paper aims to analyze the effect of Y2O3 mass fraction on the tribological performance of CrNi coating, which solved the problem of wear resistance on AISI H13 steel.
Design/methodology/approach
Y2O3 reinforced CrNi coatings were fabricated on AISI H13 steel. The microstructure and phases of obtained coatings were analyzed using a super-depth of field microscope and X-ray diffraction, respectively, and the effects of Y2O3 mass fraction on the microstructure and wear resistance were methodically investigated using a wear tester.
Findings
The average coefficients of friction and wear rates of Y2O3 reinforced CrNi coatings decrease with the increase of Y2O3 mass fraction, in which the Y2O3 plays a role of friction reduction and wear resistance. The wear mechanism of Y2O3 reinforced CrNi coating is primary abrasive wear, accompanied by adhesive wear, which is contributed to the grain refinement and dense structure by the Y2O3 addition.
Originality/value
The Y2O3 was added to the CrNi coating by laser cladding, and the effect mechanism of Y2O3 mass fraction on the tribological performance of CrNi coating was established by the wear model.